Crystallographic report

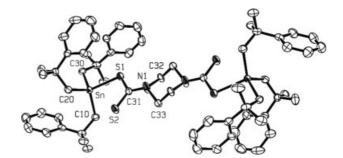
Bis[tris(2-methyl-2-phenylpropyl)tin] piperazinyldithiocarbamate

Laijin Tian, Zhicai Shang*, Qingsen Yu, Daixi Li and Guoming Yang

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Received 18 November 2003; Revised 8 December 2003; Accepted 9 December 2003

The centrosymmetric structure of bis[tris(2-methyl-2-phenylpropyl)tin]piperazinyldithiocarbamate contains four-coordinated tin and monodentate dithiocarbamate ligands. Copyright © 2004 John Wiley & Sons, Ltd.


KEYWORDS: crystal structure; organotin; piperazinyldithiocarbamate

COMMENT

The structural chemistry of triorganotin dithiocarbamates continues to be the focus of much research, 1-4 as these compounds are noted for their biological activity. 5,6 The centrosymmetric title compound adopts a distorted tetrahedral geometry at tin, with each half of the piperazinyldithiocarbamate ligand functioning in a monodentate manner (Fig. 1). The monodentate mode of coordination is confirmed by the disparity in the Sn-Sbond distances, i.e. 2.4588(9) Å for Sn-S1 and 3.329(3) Å for Sn-S2, as found in related species. ^{1-4,7} The coordination geometry is not influenced to a great extent by the close approach of the S2 atom, as all the bond angles at tin are close to the tetrahedral value except for the S1-Sn-C30 angle of 98.20(9)°.

EXPERIMENTAL

Anhydrous sodium piperazinyldithiocarbamate (0.28 g, 1 mmol) was added to a trichloromethane solution (30 ml) of tris(2-methyl-2phenylpropyl)tin chloride (1.11 g, 2 mmol). The reaction mixture was stirred for 5 h at room temperature and filtered. After evaporating under vacuum, a white crystalline material was obtained that was recrystallized from a dichloromethane/n-hexane mixture (1:1, v/v). The product (yield 78%, m.p. 173.1–173.6 °C) was then dissolved in dichloromethane/n-hexane (1:1, v/v) and, upon slow evaporation, crystals were obtained. ¹H NMR (CDCl₃, 500 MHz) δ: 1.24 (s, 36H, 12CH₃), 1.48 (s, $J(^{119}Sn^{-1}H) = 49.5 \text{ Hz}$, 12H, 6CH₂Sn), 4.20 (s, 8H, 4CH₂N), 7.17–7.29 (m, 30H, 6C₆H₅). ^{13}C NMR (CDCl₃, 125 MHz) δ: 33.16 ($J(^{119}Sn^{-13}C) = 41.8 \text{ Hz}$, CH₃), 38.12 ($J(^{119}J^{117}Sn^{-13}C) = 328.8/314.5 \text{ Hz}$, CH₂Sn), 38.58 ($J(^{119}Sn^{-13}C) = 41.8 \text{ Hz}$, CH₃), 38.58 ($J(^{119}Sn^{-13}C) = 41.8 \text{ Hz}$, CH₂Sn), 38.58 ($J(^{119}Sn^{-13}C) = 41.8 \text{ Hz}$)

Figure 1. Molecular structure of (PhC(CH₃)₂CH₂)₃SnS₂CN (CH₂)₂NCS₂Sn(CH₂C(CH₃)₂Ph)₃; hydrogen atoms have been removed for clarity. Selected geometric parameters: Sn-S1 2.4588(9), Sn-C10 2.170(3), Sn-C20 2.169(3), Sn-C30 2.182(3), S1-C31 1.761(3), S2-C31 1.663(3) Å; S1-Sn-C10 105.90(10), S1-Sn-C20 114.45(10), S1-Sn-C30 98.20(9), C10-Sn-C20 115.75(13), C10-Sn-C30 109.21(14), C20-Sn-C30 111.79(13)°.

19.5 Hz, CCH₂), 50.02 (CH₂N), 125.79, 125.95, 128.41, 150.92 (C₆H₅), 199.76 (CS₂). Intensity data were collected at 293 K on a Bruker SMART CCD diffractometer using a colorless crystal $0.26 \times 0.35 \times$ 0.36 mm³. $C_{66}H_{86}N_2S_4Sn_2$, M = 1272.99, triclinic, $P\overline{1}$, a = 9.3075(17), b = 10.1099(18), c = 19.054(3) Å, $\alpha = 91.587(3)$, $\beta = 101.232(3)$, $\gamma = 10.1099(18)$ 115.995(2), $V = 1567.7(5) \text{ Å}^3$, Z = 1, 4471 unique data ($\theta_{\text{max}} 23.3$), R = 0.033 (all data), $\omega R = 0.084$ (all data), $\rho_{\text{max}} = 0.52 \,\text{e}^{-}\,\text{Å}^{-3}$. The atoms C32 and C33 in the piperazine ring were found to be disordered over two positions; from refinement, these had 50% occupancy each. The molecules were refined isotropically and hydrogen atoms were not included. Programs used: SHELXTL, WINGX, ORTEP. CCDC deposition number: 224 363.

^{*}Correspondence to: Zhicai Shang, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China. E-mail: shangzc@mail.hz.zj.cn

Main Group Metal Compounds AOC

REFERENCES

- Song X, Cahill C, Eng G. Main Group Met. Chem. 2002; 25: 13.
 Kana AT, Hibbert TG, Mahon MF, Molloy KC, Perkin IP, Price LS. Polyhedron 2001; 20: 2989.
- 3. Chandra S, James BD, Magee RJ, Patalinghug WC, Skelton BW, White AH. J. Organometal. Chem. 1988; 346: 7.
- 4. Holt EM, Nasser FAK, Wilson Jr A, Zuckerman JJ. Organometallics 1985; 4: 2073.
- 5. Siddiqi KS, Kureshy RI, Khan NH, Zaidi SAA. Indian J. Chem. A 1985; **24**: 578.
- 6. Eng G, Song X, Duong Q, Strickman D, Glass J, May L. Appl.Organometal. Chem. 2003; 17: 218.
- 7. Tiekink ERT. Main Group Met. Chem. 1992; 15: 161.